

MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO. FRM-001-QSP-004 DEC.01, 2001.

TENTATIVE TEACHING PLAN (THEORY)

Department: Civil Engineering

Name of Teacher: Engr. Jawaid Kamal Ansari

Subject: Structural Analysis

Course Code: CE306

Batch: F-16CE-C

Year: 3rd

Semester: 1st (5th)

Semester Starting Date: 15-10-18

Semester Suspension Date: 06-02-2019

Course Learning Outcomes (CLOs): Upon successful completion of the course, the student will be able to:

CLO	Description	Taxonomy Level	PLO
1	Have Basic Understanding of Determinate and Indeterminate Structures.	C2	1.
2	Determine Deflections and Slopes of Beams, Frames and Trusses.	С3	1
3.	Analyze Structures by Conventional Analytical and Modern Matrix methods.	C4	2

S#	Topic .	CLO	No: of lectures
1.	Introduction to the Subject	C2	1
2.	Determinate and Indeterminate Structures	C2	1
	Double Integration Method		
3.	Introduction and derivation of formula.	C3	1
4.	Slope and deflection of cantilever & simply supported Beams	C3	2
5.	Slope and deflection of beams with distributed loadings	C3	2
6.	Maximum deflection of Beams	C3	1
	Moment Area Method		
7.	Derivation of theorems of Moment Area Method	C3	1
8.	Moment Area Method for cantilever & simply supported beams	C3	2
9.	Moment area method for overhanging beams	C3	2
10.	Introduction to "Moment by Parts Method"	C3	1
	Conjugate Beam Method		
11.	Introduction to conjugate beam method and conjugate supports.	C3	1
12.	Problems on cantilever and simply supported beams	C3	2
13.	Problems on overhanging beams	C3	2
	Unit Load Method		
14.	Introduction and derivation of formula	C3	1
15.	Slope and deflection of simple beams with multiple loadings	C3	2.
16.	Slope and deflection of frames	C3	2 !
	Three Moment Equation		
17.	Introduction and derivation of formula	C4	1.
18.	Problems of continuous beams	C4	2
19.	Shear force and bending moment diagrams of continuous beams	C4	1
	Moment Distribution Method		
20.	Introduction to the Moment Distribution Method	C4	1
21.	Problems of continuous beams	C4	2
22.	Problems of frames	C4	1
	Slope Deflection Method		
23.	Introduction and derivation	C4	1
24.	Problems on continuous beams	C4	1
25	Drohlams on Frames	C4	1

S#	Topic	CLO	No: of lectures			
	Matrix Method of Analysis					
26.	Introduction to matrix stiffness method	C4	1			
27.	Formation of element stiffness matrix for truss, beam and frame element	C4	2 _{V.}			
28.	Deformation and Force transformation matrix	C4	2 .			
29.	Structures stiffness matrix for truss, beam and frame elements,	C4	2			
30.	Analysis of indeterminate structure using stiffness method.	C4	3 .			
	TOTAL		45			

Signature of Teacher:

Remarks of DMRC: Approved
Signature of Chairman

Dated: 2-11-18-

Signature of Chairman

Dated: